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We focus on the early evolution of energy E and enstrophy Z when the dissipation
grows in significance from negligible to important. By considering a sequence of
viscous shell model solutions we find that both energy and dissipation are continuous
functions of time in the inviscid limit. Inviscidly, Z takes only a finite time t∗ to diverge,
where t∗ depends on initial conditions. For viscous solutions, Z peaks long after t∗,
but the inflection point for Z(t) provides an excellent approximation to t∗. Near t∗,
all of our high Reynolds number solutions obey the formula ναdZ/dt = F(νβZ).
Neither the function F nor the constants α and β depend on initial conditions. We
use F to obtain the inviscid limit. The energy spectrum remains concave down on
double logarithmic scales until t∗. At t∗, the spectrum becomes algebraic at high
wavenumbers, i.e. E(k, t∗) ∼ C0k

σ . Crucially, the spectral slope σ is steeper than
−5/3. Thus, we conclude that the inviscid singularity at t∗ is not associated with the
establishment of a semi-infinite Kolmogorov range. For viscous solutions, the −5/3
range builds gradually after t∗ starting from high wavenumbers, and Z peaks when
the inertial range reaches the integral scale. Thus, the formation of the inertial range
is a viscous process in our shell model.

1. Introduction
Three-dimensional turbulent flows dissipate energy. This dissipation is related to

the enstrophy via the equation dE/dt = −νZ . The dissipation does not become
less significant the higher the Reynolds number (e.g. the smaller the viscosity). On
the contrary, observations suggest a finite limit for dissipation when the Reynolds
number approaches infinity (Sreenivasan 1984). Moreover, at high Reynolds numbers,
a laminar flow with vorticity usually does not stay laminar for long, but quickly
becomes turbulent and thus energy dissipating. On phenomenological grounds, we
therefore expect that Z becomes unbounded in the limit of vanishing viscosity. In
addition, we may suspect that Z diverges within a finite time. This plausible inviscid
singularity in Z is called the ‘enstrophy divergence’ or the ‘energy catastrophe;’ see
Lesieur (1990).

Enstrophy divergence occurs in models of isotropic turbulence, the simplest case
being the constant-skewness model for inviscid flow:

dZ

dt
= csZ3/2. (1.1)

Here c is a positive numerical constant, and s is the velocity-derivative skewness
factor, which measures vortex stretching in the flow. By assuming that s is constant
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in (1.1), we obtain enstrophy divergence of the form

Z =
4

c2s2(t− t∗)2
, t < t∗ =

2

cs
√
Z(0)

. (1.2)

If s depends on time but remains finite and positive then Z still diverges within
a finite time. This result follows from rewriting (1.1) as an equation for Z−1/2 and
integrating; for details see Lesieur, p. 149. The literature puts the value of s at 0.3–0.5
for isotropic turbulence (Batchelor 1960, p. 118) and at 0.7 for atmospheric data
(Wyngaard & Tennekes 1970). However, it is uncertain if those values of s remain
valid in the inviscid limit. Thus, we cannot use them to conclude that the enstrophy
blows up in the Euler equations. In fact, whether the Euler equations lose regularity
in a finite time or not is a difficult and unsolved mathematical problem. For an
introduction to this problem we refer to Frisch (1995, p. 115), and Dombre & Pumir
(1994). Recent numerical work on finite time singularities in the Euler equations
includes Pelz (2001). In the present paper, we do not address the regularity question
for the Euler equations, but scaling laws in a particular shell model of turbulence.
Without question, enstrophy divergence occurs in our model. Our task is to analyse
this divergence.

Enstrophy divergence also occurs in the closure model EDQNM in the limit of
zero viscosity; see Lesieur p. 183 and Andre & Lesieur (1977). In particular, Lesieur
describes how finite energy dissipation in turbulent flows is consistent with a Kol-
mogorov range E(k) ∝ k−5/3 extending to all high wavenumbers when ν → 0. The
corresponding enstrophy spectrum then diverges as Z(k) ∝ k1/3. The dissipation, of
course, cuts the inertial range off near the dissipation scale so that the integral over
Z(k) remains finite when ν → 0. Lesieur points out that the inviscid enstrophy diver-
gence may occur precisely as the inertial range stretches out to infinite wavenumbers.
Briefly, we can state the argument as follows. Assume that a finite section of k−5/3

range has formed and remains at a stationary level. Also, assume a constant energy
flux toward higher wavenumbers. Because the integral of E(k) ∝ k−5/3 converges,
only a finite amount of energy can fit under the inertial range at high wavenumbers.
The constant energy flux supplies that amount of energy in a finite time. So the
extension of the inertial range to infinity occurs in a finite time. According to Lesieur,
this scenario is consistent with EDQNM calculations. For viscous calculations with
the same initial conditions, Z then will peak at a time t′ near t∗ when the inviscid
singularity occurs; see Lesieur p. 153.

In this paper, we examine the enstrophy divergence using Zimin’s shell model (V.
Zimin personal communication 1994; Zimin & Hussain 1995) rather than EDQNM.
Important conceptual differences separate these two models as they are constructed to
model different aspects of turbulence. Usually, the solutions to the two models are not
directly comparable. EDQNM is a closure model and thus describes the evolution
of an ensemble average whereas Zimin’s model, like other shell models, describes
single realizations (Lorenz 1972). EDQNM makes statistical assumptions to close
the Kármán–Howard equation, which is an exact equation for isotropic turbulence.
In contrast, shell models model the Navier–Stokes equations in wavenumber space,
but make no statistical assumptions. Solutions to EDQNM are regular because
they represent ensemble averages of all realizations. However, solutions to shell
models are typically chaotic because they represent individual realizations. Such
chaotic solutions produce jagged energy spectra different from the smooth spectra
of EDQNM. The chaotic motion in a shell model contains the turbulence statistics,
albeit not for the Navier–Stokes equations. One obtains the evolution of ensemble



Self-similar enstrophy divergence 243

averages by averaging over a statistically significant ensemble of shell model solutions.
By drawing out the differences between closure models and shell models, we do not
claim one model is closer to reality than the other. On the contrary, the two modelling
approaches are complementary.

The fundamental difference between Zimin’s shell model and EDQNM is not at
all obvious from the energy spectra presented in Zimin & Hussain (1995). In fact,
their spectra look like EDQNM spectra. The reason for this similarity is that only
solutions on a special manifold in the shell model were considered. On this manifold,
solutions are not chaotic and they converge toward a similarity solution (with two
characteristic length scales – the integral and dissipation scales) much like EDQNM.
However, the full version of Zimin’s shell model has two variables per shell rather
than one as in Zimin & Hussain (1995). For the full model, typical solutions are
chaotic as in other shell models. In our work presented here, we need not consider
ensemble averages. To analyse the enstrophy divergence, individual realizations suffice
for two reasons. First, the chaotic motion that requires ensemble averaging does not
start until after t∗; see Melander (1997). Secondly, our shell model, like other shell
models, has an inviscid fixed point corresponding to the Kolmogorov inertial range.
In fact, the special manifold considered in Zimin & Hussain (1995) is precisely the
stable manifold for this fixed point. The fact that the fixed point is an attractor on the
stable manifold explains the absence of chaotic behavior in Zimin & Hussain (1995).
More importantly, solutions starting from initial conditions near the stable manifold
follow this manifold until they are close to the fixed point. Only then do they turn
away from the manifold and become chaotic. Thus, the stable manifold determines
the early evolution of the shell model solutions.

The organization of the paper is as follows. We begin in § 2 by reviewing Zimin’s
shell model and justifying our use of this model. In § 3, we examine the dependence
of Z(t) on the viscosity ν for fixed initial conditions. In § 4, we complete our study
of Z(t) by examining its dependence on initial conditions for a fixed value of ν. We
incorporate results from § 3 to obtain a single first-order differential equation that
describes the evolution of the enstrophy near t∗. Section 5 examines the skewness
factor s near t∗, and § 6 describes the evolution of the energy spectrum near t∗. A
comparison with EDQNM concludes the paper in § 7.

2. The shell model equations
Work on shell models began with Lorenz (1972), Gledzer (1973), Desnyansky &

Novikov (1974) and Yamada & Okhitani (1987). Since then, a variety of shell models
have been developed for the incompressible Navier–Stokes and other physical equa-
tions. In particular, the GOY model has been extensively studied with the focus being
on anomalous scaling in fully developed turbulence, e.g. Jensen, Paladin & Vulpiani
(1991). For an introduction to the subject of shell models we refer the reader to Bohr
et al. (1998). We do not use the popular GOY model for reasons described below.

The present study is linked to an ongoing investigation into the classic problem of
decaying isotropic turbulence. The primary aim of that investigation is to develop a
theory for the inviscid limit of the decay. For this purpose, direct numerical simulations
of the Navier–Stokes equations are not practical or even possible. Thus, we have
chosen to use a shell model as our main computational tool. To our knowledge,
Zimin’s model is the only shell model that can currently address the decay problem.
In contrast to other shell models, Zimin’s includes the non-local interactions that are
crucial in the decay problem. Starting from localized initial conditions in wavenumber
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space, the enstrophy divergence always precedes the general decay in the shell model.
This occurrence of the enstrophy divergence motivates the present paper.

Zimin bases his model on a wavelet expansion of the Navier–Stokes equations
very similar to the wave packet expansion of Nakato (1988). Modelling assumptions
then reduce the number of variables in each wavenumber shell to just two ‘collective’
variables representing r.m.s. fluctuations of the wavelet amplitudes. Zimin’s modelling
assumptions, such as Brownian motion at each scale, are common in many disciplines
of physics. Thus we may argue that Zimin’s model at least in part rests on solid
physical ground. In contrast, the GOY model has little rigorous basis.

We use Zimin’s model as described in Zimin & Hussain (1995). There, one variable
Sn characterizes the velocity fluctuations in the nth shell of wavenumbers 2nπ < k 6
2n+1π. In this formulation, Zimin’s model exhibits no chaotic behaviour and thus acts
more like a closure model than a typical shell model. However, this resemblance with
closure models is deceptive. In its full version, Zimin’s model has two variables per
shell: Sn and Dn (Zimin 1994, personal communication). It so happens that Dn ≡ 0 is
a solution manifold; see equations below. Excluding forcing terms, the full equations
for Zimin’s model read

dSn
dt

= 25n/2

∞∑
m=−∞

Tm

(
SnSn−m

24m
− DnDn−m

25m
− 23m/2S2

n+m + 23m/2D2
n+m

)
− ν4n2π2Sn, (2.1)

dDn
dt

= 25n/2

∞∑
m=−∞

Tm

(
SnDn−m

25m
− DnSn−m

24m

)
− ν4n2π2Dn. (2.2)

The model constants are as follows: Tm = 0 for m < −1, T−1 = 0.1935, T0 = 0,
and Tm = 25/2T−1 for m > 1; ν is the kinematic viscosity. Note that T−1 is the only
‘independent’ constant; naturally, T−1 determines the Kolmogorov constant.

Expressions for energy E, enstrophy Z , helicity H , palinstrophy P , and the cor-
responding shell spectra En, Zn, Hn and Pn are obtained directly from the shell
amplitudes Sn and Dn as follows:

E ≡∑
n

En, En = 1
4
ρn(S

2
n + D2

n), (2.3)

H ≡∑
n

Hn, Hn = 2π2nρnSnDn, (2.4)

Z ≡∑
n

Zn, Zn = π24nρn(S
2
n + D2

n), (2.5)

P ≡∑
n

Pn, Pn = 2π416nρn(S
2
n + D2

n), (2.6)

where ρn ≡ 7π8n/18. Note that (2.1), (2.2), and the derivative of (2.5) directly calculate
dZ/dt as well. The above expressions resemble expressions in Fourier modes of a
velocity field; see for example Lesieur, p. 112. In fact, this resemblance becomes a
perfect analogy once we make the following observations. First, Zimin’s model builds
on discrete wavelets rather than Fourier modes. Thus, summations replace integrals
over wavenumbers. In addition, the density ρn of wavelets at scale n occurs in the
summations. Second, we must use the discrete wavenumber Kn =

√
2π2n rather than

the continuous k in Fourier formulas like Z(k) = k2E(k). Finally, the shell model uses
the complex helical-wave decomposition (Lesieur, p. 98). In fact, Sn and Dn relate to
fluctuations in the sum and difference of the complex helical modes u+(k) and u−(k)
in the nth shell.
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By construction, the inviscid shell model has a fixed point corresponding to the
Kolmogorov inertial range. That fixed point is (Sn, Dn) = (S02

−11n/6, 0), where S0 is
a constant. Note that the inviscid shell model is invariant under the transformation
(t, Sn, Dn) → (−t,−Sn,−Dn), so the sign of S0 is important for the stability of the
fixed point. A linear stability analysis of the fixed point reveals strictly non-zero real
eigenvalues. All stable eigenmodes have Dn ≡ 0 when S0 < 0; all unstable modes
have Dn ≡ 0 when S0 > 0. Thus the fixed point is an attractor on the manifold
Dn ≡ 0 when S0 < 0. The fixed point is a very special inviscid solution. Not only
does dSn/dt = 0, but the term behind the summation sign in (2.1) itself vanishes for
each m. Because of this ‘local’ cancellation, viscous solutions on the manifold Dn ≡ 0
can lock on to (Sn, Dn) = (S02

−11n/6, 0) over a finite range of shells. Consequently, we
find a viscous similarity solution with a clean inertial range. All numerical evidence
shows attraction to this similarity solution from everywhere on the manifold Dn ≡ 0.
Thus, we conclude that Dn ≡ 0 is the stable manifold for the fixed point and also
for the viscous similarity solution. We note that the stable manifold is free of helicity
in all shells (see equation (2.4)). Any perturbation off the manifold Dn ≡ 0 injects
helicity into some shells. Such perturbations immediately destroy the viscous similarity
solution and lead to chaotic behaviour (Melander 1997). We then only recover the
Kolmogorov inertial range after ensemble averaging.

The numerical solution of the shell model equations requires careful treatment.
In particular, our least-viscous calculations require the use of 128-bit arithmetic or
quadruple precision. We effectively simulate the infinite range of shells by allocating
many more shell variables than become dynamically significant during our calcula-
tions. For example, our least-viscous calculation dynamically engaged about 50 shells
out of 91 allotted. In fact, shells at the ultraviolet extreme never gain any energy,
while the shell at the infrared extreme carry less than 3× 10−31% of the total energy.
We used the same large range of shells for all calculations presented in this paper.
The computational burden of including these inactive shells in the calculation is
insignificant. We note that the main computational effort occurs near t∗ where very
short time steps are necessary. Moreover, we need a stiff solver to compute to t∗
and beyond. In fact, both VODE (Brown, Byrne & Hindmarsh 1989) and RADAU5
(Hairer & Wanner 1991) successfully integrate our shell model within a few minutes,
whereas the non-stiff solver RKSUITE (Brankin, Gladwell & Shampine 1991) fails
near t∗. VODE is, in contrast to RADAU5, readily adapted to quadruple precision.
Thus, VODE serves as our integrator for the present paper. Note that we integrate
the full shell model equations (2.1) and (2.2). Because we use the variables Sn and
Dn the numerical implementation inherits the stable manifold Dn ≡ 0 exactly. Thus,
the numerical solution stays on this manifold regardless of the inevitable round-off
errors. Finally, we note that trajectories off the stable manifold consume much more
computer time and are probably impossible to compute at the high Reynolds numbers
reported in this paper.

3. Scaling laws
The following two equations are exact for isotropic turbulence:

dE

dt
= −νZ, (3.1)

dZ

dt
=

(
98

270

)1/2

sZ3/2 − νP . (3.2)



246 M. V. Melander and B. R. Fabijonas

1.0

0.8

0.6

0.4

0.2

0
0.5 1.0 1.5

t /t*

mZ
/e

m
(a) (b)

1.21.11.00.90.8
t /t*

(t
* /

e m
)m

dZ
/d

t

25

20

15

10

5

0

Figure 1. (a) The energy dissipation νZ is shown for four values of the viscosity, ν = 7.70× 10−2,
7.70 × 10−3, 7.70 × 10−4 and 7.70 × 10−5. In all cases the evolution starts from the same initial
conditions; #2 in table 1 (§ 4). The figure suggests that the dissipation has a well-defined inviscid
limit. For normalization we use the inviscid singularity time t∗ and the maximum value εm of the
dissipation in the inviscid limit. (b) The rate of change of the dissipation is shown for corresponding
values of ν. We observe divergence at t∗.

See e.g. Lesieur, p. 146. These equations are also exact for our shell model. We
know neither the skewness factor s nor the palinstrophy P in terms of E and Z .
Therefore, we cannot in principle solve the equations for Z without making modelling
assumptions. Our objective is not to introduce such assumptions, but to analyse the
individual terms in the equations as time passes t∗. For this purpose, our numerical
shell model solutions allow us to calculate any term in the above equations (see
equations (2.3)–(2.6)). As an example, figure 1 shows the behaviour of the dissipation
and its derivative as time passes t∗ for different values of ν.

In our viscous calculations, the intrinsic Reynolds number

Rλ =
E

ν

√
20

3Z
(3.3)

changes drastically near t∗. This is because the energy remains nearly constant while
the enstrophy explodes. However, after Z has peaked at t′, the Reynolds number
varies only slowly, i.e. Rλ ∼ t−1/12 during the decay on the stable manifold; see
Melander (1997). Due to the large variation of Rλ(t) in our calculations, we quote
three values: Rλ(0) for the initial conditions; Rλ(t

′) for the decay; and Rλ(t
′′) at the

inflection point for Z(t). Rλ(t
′′) ≈ Rλ(t

∗) shows the closest proximity to the inviscid
singularity. For given initial conditions, the dependence on ν is as follows:

Rλ(0) ∼ ν−1, Rλ(t
′) ∼ ν−1/2, Rλ(t

′′) ∼ ν−0.62 ≈ ν−5/8. (3.4)

The second relation reflects that dissipation (νZ) has an inviscid limit. The third
relation follows from results obtained later in this section.

Before we concentrate on t∗, let us consider the relationship between Z and dZ/dt
during a calculation that runs far into the decay regime. The relationship generally
involves power laws and therefore is best viewed using double logarithmic axes.
Figure 2 shows a typical example for evolutions on the stable manifold. The arrows
on the graph follow the progress of time. Because the enstrophy increases before
t′ and decreases afterwards, we plot the absolute value of dZ/dt. The graph has
a cusp where dZ/dt changes sign; see (d ) in figure 2. This cusp is a consequence
of the logarithmic scale and is of no significance. Increasing enstrophy characterizes
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Figure 2. The evolution starting from initial condition #2 in table 1 for ν = 7.70 × 10−5. The
evolution progresses past t∗ and runs deep into the regime of the asymptotic decay. We analyse the
boxed part of the evolution. The letters along the curve refer to the discussion in the text.

the early evolution marked (a) in figure 2. The figure reveals a clear 3/2 slope, so
we deduce from equation (3.2) that s is roughly constant and νP is insignificant at
this stage. The inviscid evolution ends shortly before Z(t) reaches its inflection point
marked (b). From there the evolution enters a new power-law regime (c), which is of
short duration and ends before Z peaks at (d ). After (d ) the enstrophy usually decays
monotonically, but Z may peak again for some initial conditions. Before reaching
the asymptotic decay law ( f ), we see a transitional period (e) whose duration varies
with initial conditions. The decay exponent during this transitional period can differ
significantly from the asymptotic value, which is independent of initial conditions
(Melander & Fabijonas 2002, see also figure 4).

For the present investigation we focus on the boxed part of the evolution shown in
figure 2. We are especially interested in what happens in the limit of zero viscosity. To
address this question figure 3 shows the same evolution for a sequence of decreasing
viscosities. The viscosity changes by a factor of 10 between neighbouring curves.
In figure 3 we have multiplied both Z and dZ/dt by ν on the assumption that the
dissipation and its derivative have well-defined inviscid limits after t∗. This assumption
is motivated by figure 1 and is supported by the fact that all curves coincide in the
right-hand side of figure 3(a). Figure 3(a) reveals a well-defined slope A for the power
law (c) in figure 2. We measure A = −0.56.

Between the power-law regimes (a) and (c) of figure 2 we have the transition
(b) where Z and dZ/dt scale in a non-trivial way with ν. Remarkably, a similarity
technique eliminates ν from the transition: we can shift all the curves such that their
transition zones coincide; see figure 3(b). Due to the logarithmic axes, the scaling
(ναdZ/dt, νβZ) accomplishes the shifting for appropriate values of α and β. Thus, we
claim that some dimensionless function F describes the transition:

να
dZ

dt
= F(νβZ). (3.5)
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Figure 3. (a) The evolution starting from initial condition #2 in table 1 is shown as time passes
t∗ for ν = 7.70 × 10−5, ν = 7.70 × 10−6, . . . , ν = 7.70 × 10−15. The smallest ν corresponds to the
leftmost curve. (b) The same curves shifted so that both asymptotes coincide; i.e. the crossing of
the asymptotes in (a) provides the normalization factors X = exp(X) and Y = exp(Y ), see equation
(3.8). The smallest ν now corresponds to the rightmost curve. The figure reveals the existence of an
inviscid limit.

Using figure 3(a), we calculate α and β in the following way. Each curve in the figure
has a left and a right leg separated by a rounded corner. The corner corresponds
to t = t′′ ≈ t∗ when d2E/dt2 = −νdZ/dt peaks. Both legs are asymptotically straight
lines with slopes that are independent of ν. The slope of the left leg is 3/2, and the
right is A. Away from the corner the right legs coalesce into a single curve revealing
that the dissipation νZ and its derivative have well-defined inviscid limits after t∗.
Before t∗, the evolution is inviscid; therefore Z and dZ/dt evolve independent of
ν. Consequently, the spacing between the legs is uniform in figure 3(a) (note that
the figure shows νdZ/dt versus νZ rather than dZ/dt versus Z). Applying the
value 3/2 for the slope of the left leg, it is easy to show that the left legs shift as
ν1/3. Using Cartesian notation to denote the lines in figure 3(a), the left leg falls on
the line

Y = 3
2
(X − log(ν1/3)), (3.6)

while the asymptote for the right leg is

Y = A(X −X0). (3.7)

The two lines cross at the point(
X
Y

)
=

( −1/(2A− 3)
−A/(2A− 3)

)
log ν +

(
2AX0/(2A− 3)

2A2X0/(2A− 3)− AX0

)
. (3.8)

For a given value of ν, this point is just above the corner of the curve in figure 3(a).
When we shift from one curve to the next by changing ν, the point (X,Y ) shifts as
well. Thus, equation (3.8) provides the scaling coefficients α, β that make the curves
coincide. Specifically, we obtain

α = A/(2A− 3) + 1, (3.9)

and

β = 1/(2A− 3) + 1. (3.10)

We note that α = 3β/2. For A = −0.56, we have α = 1.1359 and β = 0.7573.
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IC# Signs of S−1, S0, S1 t∗ Rλ(t
′) Rλ(t

∗)

1 + + + 0.0270 1.20× 105 6.92× 105

2 −−− 0.0189 1.46× 105 7.86× 105

3 +−− 0.0297 1.54× 105 8.99× 105

4 −+− 0.0165 1.13× 105 5.95× 105

5 −−+ 0.0188 1.44× 105 7.69× 105

6 + +− 0.0281 1.44× 105 7.80× 105

7 −+ + 0.0164 1.09× 105 6.29× 105

8 +−+ 0.0294 1.51× 105 8.73× 105

Table 1. Initial conditions (IC) for the shell model calculations. The non-zero amplitudes are:
|S−1| = 72, |S0| = 392, and |S1| = 72. The initial Reynolds number is the same in all cases, namely
Rλ(0) = 7.6× 108.

Knowing α and β, we can draw important conclusions regarding the inviscid limit.
First, Z(t′′) = O(ν−β). Using that t′′ → t∗ as ν → 0, we obtain

dE

dt
= −νZ = O(ν1−β) for t 6 t∗. (3.11)

Since 1− β > 0, the dissipation vanishes before t∗. We expected this result, of course.
The derivative of the dissipation is more exciting. We have (dZ/dt)|t′′ = O(ν−α) so
that

d2E

dt2
= −ν dZ

dt
= O(ν1−α) at t = t∗. (3.12)

This quantity blows up in the inviscid limit because 1− α ≈ −0.13 is negative. Thus
E(t) is differentiable once, but not twice. Later, in § 4 we will show that differentiability
fails only at one instant, namely t∗.

4. Dependence on initial conditions
We obtained figure 3 using initial conditions with a sharply peaked spectrum.

That is, only the three amplitudes S−1, S0, S1 are non-zero. Energy, enstrophy and
palinstrophy spectra involve the squared amplitudes; see equations (2.3)–(2.6). Thus,
we can construct seven other initial conditions with the same spectra by varying the
signs of S−1, S0, S1.

The resulting evolutions differ drastically. The enstrophy diverges at a different time
in each case; see table 1. The enstrophy also peaks at a different level in each case,
as does dZ/dt. Moreover, the decay differs significantly between cases; see figure 4.
Note that we observe a common asymptotic decay exponent (αE ≈ −7/6) for the
energy, but only after 99% of the energy is lost.

In contrast, all eight cases behave alike near t∗; see figure 5(a). In fact, we can shift
the curves so that all eight coincide; see figure 5(b). The implication is that some
dimensionless function G describes all eight cases:

B
dZ

dt
= G

(
Z

C

)
. (4.1)

Here B and C are constants specific to the initial conditions. The constants account
for the shifts that make the curves coincide. We note that the left legs of the curves
have a common asymptote. The shifts must be parallel to this asymptote. Since



250 M. V. Melander and B. R. Fabijonas

100

t /t*
101 102

10–2

10–1

100

E
E(0)

100 102 104 106

10–6

10–4

10–2

100
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Figure 5. (a) Evolution of the eight initial conditions listed in table 1 for ν = 7.70 × 10−5. Note
that initial condition number two is used for normalization of all cases; this is done to keep the left
legs coinciding. (b) The same curves shifted so that both asymptotes coincide.

the slope of the asymptote is 3/2, it follows that B = C−3/2. We cannot state the
dependence on the initial conditions in further detail. In particular, we cannot provide
a formula for C in terms of initial conditions. This is in part because (4.1) is not valid
until the enstrophy starts the (t− t∗)−2 run, and that takes some time.

One initial condition (#2) is that used in § 3. Therefore, G is the same function as
that describing the dependence on ν, i.e. G = F . We combine (3.5) and (4.1) to obtain

C−3/2ν3β/2 dZ

dt
= F

(
νβZ

C

)
. (4.2)

Using similarity variables

τ =

(
C

νβ

)1/2

(t− t∗) (4.3)
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and

ζ =
νβ

C
Z, (4.4)

equation (4.2) reduces to

dζ

dτ
= F(ζ). (4.5)

This formula describes the viscous evolution near t∗ for all initial conditions and all
small values of ν. In that sense, F is a universal function for the shell model.

Let ∆τ be the ‘similarity time’ spent rounding the corner on the graph of F .
According to (4.3), the corresponding ‘physical time’ is ∆t = ∆τ(νβ/C)1/2. Since β is
positive, ∆t shrinks to zero in the inviscid limit. Thus, the two asymptotic legs of F
determine the inviscid limit of Z(t). On the left leg F(ζ) = Kζ3/2, where K is some
numerical constant determined by how we normalize F . Solving for ζ, we obtain
ζ = 4/(K2τ2). We readily rewrite this expression as

Z =
4

K2(t− t∗)2
, t < t∗. (4.6)

Neither C nor ν appears in this formula. The only reference to the initial conditions
is therefore through t∗. Similarly, on the right leg F(ζ) = K̃ζA, where K̃ is another
numerical constant (related to K) again determined by the normalization of F . We
solve for ζ and use (3.10) to obtain ζ = Mτ2/β−2, where M is a numerical constant. M
depends only on A and K̃ . Again we rewrite the solution using the original variables:

νZ = MC1/β(t− t∗)2/β−2 ≈MC4/3(t− t∗)2/3, t > t∗. (4.7)

According to equations (3.11) and (4.7), the dissipation νZ has a well-defined inviscid
limit ε(t) both before and after t∗. Moreover, ε(t) is continuous at t∗, but not differen-
tiable there. The derivative of ε(t) vanishes before t∗, but ε(t) has a vertical asymptote
from the right side of t∗. Thus, dε/dt is discontinuous and not defined at t∗; it is,
however, defined everywhere else. Because of the discontinuity at t∗, the convergence
νdZ/dt→ dε/dt is non-uniform. This clarifies what we see in figure 1(b).

We can only find F by solving the shell model equations. The required numerical
calculations are not straightforward. In particular, it is necessary to use 128-bit
arithmetic to reproduce the numerical results in the present paper. Various technical
problems may arise in this connection, including the fact that not all ODE solvers
produce accuracies consistent with 128-bit arithmetic. (We used the solver VODE
by Brown et al. (1989)). To allow the reader to bypass these technical difficulties we
present both a tabulation and a spline fit in table 2.

We fit f ≡ log10 F as a function of x = log10 ζ. That is, we fit the graph of F as it
appears on double logarithmic axes like in figure 3(b). This graph is easy to fit due
to the straight asymptotes. Our fit uses the B-spline representation

f(x) =

m−4∑
i=1

ciNi(x), (4.8)

where Ni(x) is the normalized cubic B-spline defined on the knots λi, λi+1, . . . , λi+4

and m is the total number of knots. The first four knots are identical, and so are
the last four. The spline coefficients are determined using the method of Dierckx
(1975). Standard numerical software reproduces f(x) from knots and coefficients;
see Cox (1972). (We used routine E02BBF from the NAG library.) Our spline fit is
graphically indistinguishable from the outermost curve in figure 3(b). Naturally, we
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i λi ci f(λi)

1 −1.419192 −2.110824
2 −1.419192 −1.798384
3 −1.419192 −1.310180
4 −1.419192 −0.668218 −2.110824
5 −0.786923 −0.287936 −1.183519
6 −0.437064 −0.133485 −0.703656
7 −0.033788 −0.176705 −0.259045
8 0.169455 −0.289218 −0.156832
9 0.302857 −0.317946 −0.203074

10 0.396939 −0.327974 −0.286902
11 0.460200 −0.365825 −0.316456
12 0.517565 −0.481182 −0.332549
13 0.550899 −0.797038 −0.346404
14 0.715778 −1.090908 −0.424479
15 1.243444 −1.283891 −0.705607
16–19 2.275448 2.118210 −1.283891

Table 2. Knots and coefficients for the spline reconstruction of F .

have normalized F as in figure 3(b). That is, the crossing of the asymptotes is at
the origin, thus allowing easy renormalization. To shift f(x) horizontally, we subtract
a constant from all knots. To shift f(x) vertically, we subtract a constant from all
coefficients. The vertical shift works because the splines form a partition of unity:

m−4∑
i=1

Ni(x) = 1.

5. The skewness factor
We calculate the skewness factor s using equation (3.2). From our numerical solution

of equations (2.1) and (2.2), we know all quantities in (3.2) other than s. Instantaneous
data thus yield

s =

(
270

98

)1/2(
dZ

dt
+ 2νP

)
Z−3/2. (5.1)

This formula eliminates numerical differentiation from the post-processing of our
numerical shell model solution. We use no ensemble averaging in the calculation
of s because we only consider realizations on the stable manifold (those are not
chaotic). Below, we examine the variation of s with Reynolds number, time and initial
conditions.

Figure 6(a) shows the evolution of s at various Reynolds numbers for fixed initial
conditions. We observe that s converges to a well-defined inviscid limit before t∗.
Sometime after t∗ however, s has no inviscid limit. In fact, we find that at times much
larger than t∗

s = s0 + A0 cos(ω0 ln t+ φ), (5.2)

where the constants s0, A0 and ω0 have inviscid limits, but the phase φ does not.
Near t∗ the skewness factor fluctuates wildly, but in a surprisingly systematic way. In
the inviscid limit, s becomes discontinuous at t∗ with one oscillation before t∗ and
another after t∗. These oscillations are power laws in |t − t∗| with purely imaginary
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Figure 6. (a) The evolution of the skewness factor s for a sequence of increasingly smaller ν. The
initial conditions are the same in all cases. (b) The skewness factor s for the eight initial conditions
listed in table 1 for ν = 7.70× 10−5.

exponents. By replotting the data so the abscissa is logarithmic in |t− t∗|, we find that
both amplitude and frequency are constants. We also find non-uniform convergence
of the oscillations near t∗ as ν → 0. The plot is rather complicated and not shown
here.

Figure 6(b) illustrates the dependence on initial conditions. The eight initial condi-
tions are those listed in table 1, so that the initial spectra are identical, but the phases
of the shell variables differ. The initial Reynolds number is the same in all cases.
Since t∗ differs significantly among the eight evolutions, we have normalized t by t∗.
The general comments made for figure 6(a) also apply here. In addition, we point to
a common value of s near t∗. Moreover, the constants s0, A0 and ω0 are the same
for all cases, but the phase φ is not. At early times before t∗, the skewness factor
varies substantially from case to case. Sometimes, s is even negative. This may seem
unusual as s is normally assumed positive. The explanation lies in the fact that we
are considering individual realizations rather than ensemble averages. Specifically, the
inviscid shell model is invariant under the transformation (Sn, Dn, t)→ (−Sn,−Dn,−t).
Our selection of the initial conditions thus ensures that dZ/dt is initially positive in
half the cases and negative in the other half. With νP negligible at early times, s is
proportional to dZ/dt and can therefore be negative.

Overall, our results for the skewness factor compare favourably with the literature.
As with EDQNM, s remains bounded during the divergence, and the inviscid limit is
discontinuous at t∗. The size of s is also acceptable. Excepting the slow small-amplitude
oscillation, s is constant after t∗ as it should be for decaying turbulence; see Lesieur,
p. 146. In addition, the early overshoot of s before t∗ is a well-known phenomenon,
e.g. (McComb 1996, p. 316). For comparison, we mention the recent calculations
by Lesieur & Ossia (2000) which obtain the inviscid limit of s for EDQNM. The
calculations show s increasing monotonically from near zero at t = 0 to a maximum
of 1.132 near t∗. An abrupt drop then follows and s subsequently flattens at the
constant value 0.547.

The small-amplitude oscillations are both a puzzle and a concern. We find them
both near t∗ and at late times. They also occur in E(t) during the final t−5/2 decay at
very low Reynolds numbers. We do not know much about the oscillations, except that
they are power laws in |t− t∗| with imaginary exponents. One power law occurs before
t∗, a second after t∗, and third at late times. Currently, it is unclear to us whether
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Figure 7. (a) The compensated energy spectrum at selected times in the interval [0, t′], mostly near
t∗. The vertical scale is logarithmic with base 2, but otherwise arbitrary. The dashed line shows the
spectral slope at t∗. Note that the computational range of shells is larger than shown in the figure.
(b) Collapse of the spectral evolution before t∗; n0 = log2 L where L is given by equation (6.7).

the oscillations are just a peculiarity of our particular shell model or if they have
some physical significance. We do know that the oscillations are part of the model
and not numerical artifacts. Until other theoretical considerations support a physical
interpretation, we are inclined to suspect the physical relevance of the oscillations.
Note that ensemble averaging will take the oscillations out of the skewness factor.
Unfortunately, ensemble averaging will also blur the behaviour of s during the
enstrophy divergence as t∗ varies with initial conditions.

6. The energy spectrum
The shell model spectrum En is discrete and thus differs from the continuous

wavenumber spectrum E(k). However, the two spectra are closely related. In fact, we
may think of the discrete spectrum as obtained from the continuous spectrum by
integrating one octave of wavenumbers. For an algebraic spectrum (e.g. E(k) = km),
the spectral slope is therefore larger by 1 in the discrete case than in the continuous
case, i.e. ∫ 2n+1

2n
km dk ∼ (2n)m+1. (6.1)

In particular, the slope of the Kolmogorov inertial range is −5/3 for the continuous
spectrum, but −2/3 for the shell spectrum.

We gain information about the formation of singularities from the high-wavenumber
spectrum. Whenever the spectrum tails off algebraically, some regularity of the ve-
locity field is lost. That is, the physical-space velocity field is differentiable only a
finite number of times. In contrast, when the spectrum decays faster than algebraic
at high wavenumbers the velocity field is differentiable arbitrarily many times. Thus,
if the spectrum becomes algebraic at all high wavenumbers within a finite time, then
derivatives beyond a certain order of the velocity field develop finite time singularities.

Figure 7(a) shows several snapshots of the compensated energy spectrum 22n/3En
at times near t∗ for our least-viscous calculation. The Kolmogorov inertial range is
horizontal in this figure. We also note that the spectral evolution is from left to
right. The dashed line corresponds to the first algebraic spectrum that forms during
the evolution. Inviscidly, this algebraic spectrum produces a singularity and thus by
definition forms precisely at t∗. The spectral slope is distinctively steeper than for
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the inertial range. In fact, figure 7(a) shows conclusively that the inertial range is
absent before t∗. Therefore, the formation of the inertial range is not causing the
enstrophy divergence. Figure 7(a) also reveals that the inertial range develops in the
viscous regime of the calculation after t∗. The formation process starts at the high
wavenumbers and gradually extends to the integral scale.

On the double logarithmic axes, the spectrum remains concave down until t∗.
Moreover, the spectrum appears to evolve self-similarly at high wavenumbers. That
is, the spectrum slides along the dashed line in figure 7(a) while keeping the same
shape. This process forms the stationary algebraic spectrum (the dashed line in
figure 7a) starting near the integral scale. Without viscosity, this algebraic spectrum
reaches infinite wavenumbers precisely at t∗. This inspection suggests that we should
look for a self-similar description of the high-wavenumber spectrum before t∗. We
draw further support for this idea by using computer graphics to shift the individual
spectra in the figure. In fact, we find that simple translations make the spectra
collapse to a single curve representing the evolution at large wavenumbers. Thus, we
may expect self-similarity in the form of power laws. Based on these observations,
we analyse the inviscid evolution of the high-wavenumber spectrum in an idealized
setting. For simplicity, we use the continuous wavenumber description (k) rather than
the discrete one (shells).

We assume that the evolution at the integral scale can be separated from that at
the high wavenumbers. This way, we may consider the low-wavenumber spectrum to
be

E(k, t) ∼ C0k
σ as k → 0 (6.2)

for the purpose of our high-wavenumber analysis. This asymptotic form then rep-
resents the straight section of the spectrum along the dashed line in figure 7(a).
Guided by the figure, we furthermore assume that C0 is independent of time. Since
self-similarity of the energy spectrum implies self-similarity of the enstrophy spectrum,
we use the fact that shifts make the spectra in figure 7(a) coincide and write

Z(k, t) = Z(t)L(t)J(kL(t)), t < t∗, (6.3)

where L(t) is a typical length scale, and J a positive function with normalization∫ ∞
0

J(x) dx = 1. (6.4)

We can now derive two expressions for the enstrophy contained in scales larger than
L. On the one hand we have∫ 1/L

0

Z(k, t) dk = Z(t)

∫ l

0

J(x) dx = C1Z(t), (6.5)

where C1 is a positive numerical constant less than 1. On the other hand, we find∫ 1/L

0

Z(k, t) dk =

∫ 1/L

0

k2E(k, t) dk =

∫ 1/L

0

C0k
σ+2 dk =

C0

σ + 3
L−σ−3. (6.6)

Using that Z(t) = C2(t− t∗)−2 before t∗, we can solve for L:

L ∝ (t∗ − t)2/(σ+3). (6.7)

These expressions allow us to describe the inviscid energy spectrum before t∗. We
have

E(k, t) = Z(k, t)/k2 = Z(t)L3J(kL)/(kL)2 (6.8)
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so that the energy spectra collapse to a single curve when plotting E(k, t)(t∗ − t)2σ/(σ+3)

versus k(t∗ − t)2/(σ+3). The corresponding formula for the shell spectrum calls for
plotting En(t

∗ − t)(2+2σ)/(σ+3) against n + (2/(σ + 3)) log2(t
∗ − t). Figure 7(b) shows

the compensated spectrum before t∗ in collapsed form. In this figure, the spectral
evolution is from right to left.

Exactly at t∗, the energy spectrum becomes algebraic: E(k, t∗) = C0k
σ for all k.

Thus for t < t∗ we calculate the amount of additional energy that can still fit under
the spectrum C0k

σ as

Ea = C4

∫ ∞
1/L

C0k
σ dk ∝ L−σ−1, (6.9)

where C4 is another numerical constant. Since C0 is independent of time, the energy
accumulation at high wavenumbers comes from the flux through the spectrum

Eflux = −dEa
dt
∝ d

dt
L−σ−1 ∝ (t∗ − t)ξ

where

ξ =
−2(σ + 1)

σ + 3
− 1. (6.10)

Note that the exponent ξ vanishes when σ = −5/3, but is positive when σ < −5/3.
Using figure 7(a), and recalling that the spectral slope for the shell model is 1 larger
than for the Fourier spectrum, we have σ ≈ −2/3− 1− 0.24 ≈ −1.90 and ξ ≈ 0.66.

We learn two things from this analysis. First, the inertial slope −5/3 emerges at t∗
if the spectrum is self-similar with a stationary asymptote on the left-hand side and
also has constant energy flux. This is in line with Lesieur’s analysis. Second, the fact
the shell model builds a spectrum with a slope σ − 1 steeper than the Kolmogorov
slope −2/3 means that energy flux is not constant before t∗. On the contrary, the
energy flux vanishes at the singularity, i.e.

Eflux ∝ (t∗ − t)ξ ≈ (t∗ − t)2/3, t < t∗. (6.11)

7. Conclusion
We have presented a detailed investigation of the enstrophy divergence in the

inviscid limit of Zimin’s shell model. Inviscidly, the enstrophy is known to blow up
in both shell and closure models. Thus, we do not draw conclusions regarding the
existence of a finite time singularity for the Euler equations. Instead, we juxtapose
our results with those obtained by Lesieur for EDQNM without helicity. Our shell
model investigation considers the stable manifold for the Kolmogorov inertial range.
On this manifold, the helicity permanently vanishes in all shells. As a result, the shell
model exhibits no chaotic behaviour. Thus, we may compare individual solutions
with those obtained via EDQNM. This situation is exceptional, because normally
individual shell model solutions are chaotic and we must ensemble average before
comparison with a closure model such as EDQNM can take place.

Some of our findings agree with EDQNM. For example, our skewness factor s
compares well with EDQNM: s has similar size, and remains positive and finite at t∗.
Moreover, we reproduce the discontinuity of s in the inviscid limit. Like EDQNM,
we find inviscid expressions for the enstrophy proportional to (t− t∗)−2 before t∗, and
an inviscid limit for the dissipation after t∗.

Our most important results, however, disagree with EDQNM. For viscous cases,
our enstrophy does not peak at or near t∗ as in EDQNM; see Lesieur, p. 153. We
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trace the source of this difference to the evolution of the energy spectrum. The critical
difference concerns the spectral slope of E(k, t∗) in the inviscid limit. Lesieur suggests
that a finite (−5/3) Kolmogorov range forms before t∗ and extends to infinity precisely
as t → t∗. In contrast, we find no Kolmogorov range before t∗. Exactly at t∗, we do
find a semi-infinite algebraic spectrum in the inviscid limit, but the spectral slope
is steeper than −5/3. Moreover, we find that the Kolmogorov range forms after t∗.
The formation process is gradual. It starts at the high wavenumbers and progresses
backwards through the spectrum. The enstrophy peaks when the formation process
finishes. In Lesieur’s scenario, that happens at t∗; in our case, it occurs much later.
Another significant difference concerns the energy flux through the spectrum before t∗.
Lesieur’s scenario corresponds to a constant energy flux, but we find that it vanishes
completely as t→ t∗. We may summarize these differences by noting that we have a
‘softer’ inviscid singularity at t∗ than does Lesieur. In our case, the inviscid limit of
the dissipation is continuous. In Lesieur’s case, it jumps from zero to a finite value
at t∗.

Parts of our analysis go beyond what is currently available for EDQNM. In
particular, we are referring to the similarity formula (4.5) describing the viscous
passage through t∗. Table 2 allows reconstruction of this formula through spline
coefficients for the function F . Also, we present asymptotic formulas, including that
for the inviscid limit of the dissipation (3.11) and (4.7). Finally, one might apply our
spectral similarity formula (6.8) to check Lesieur’s conjecture (a Kolmogorov range
exactly at t∗) via direct numerical simulations. That is, one could assume self-similarity
of the spectrum and use the formula to find the spectral slope σ.

Finally, we note that the energy spectrum changes very fast near t∗. One can
therefore easily miss the events associated with the inviscid singularity. In fact,
insufficient sampling of the spectral evolution will lead one to believe that the
Kolmogorov range forms at t∗. This incorrect conclusion was drawn by Melander
(1997). After considering the enstrophy evolution in recent EDQNM calculations
(Lesieur & Ossia 2000, figure 3b) and comparing them with our shell model, we have
some doubt whether the Kolmogorov range actually forms at t∗ even in EDQNM.
When plotted in the same way, the enstrophy evolution looks qualitatively the same
for both models. Moreover, it appears that in EDQNM the energy catastrophe occurs
near the inflection point for the enstrophy rather than near the peak value. That may
suggest the spectral slope at t∗ to be steeper that −5/3 in EDQNM as well. Only a
close examination of carefully sampled EDQNM spectra can address this issue.
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